Machine learning models for terroir classification and blend similarity prediction: A proof-of-concept to enhance cocoa quality evaluation.

Journal: Food chemistry
Published Date:

Abstract

Flavour is a key quality attribute of cocoa, essential for industry standards and consumer preferences. Automated methods for assessing flavour quality support industrial laboratories in achieving high sample throughput. Targeted and untargeted HS-SPME-GC-MS chromatographic fingerprints of cocoa volatiles from fermented beans and liquors, combined with machine learning (ML), are used for terroir qualification, enabling effective origin classification with both approaches. The targeted method, which aims to identify chemical patterns associated with sensory attributes is used for flavour comparison of origin with a reference. The similarity analysis successfully identified the most suitable origin to create new blends with a similar flavour to the industry standard. The resulting ML, model based on odorants distribution, enabled the prediction of similarity of blends to the industrial reference with an accuracy of 88 %, a sensitivity of 90 % and a specificity of 84 %.

Authors

  • Eloisa Bagnulo
    Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy.
  • Giorgio Felizzato
    Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy.
  • Andrea Caratti
    Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy.
  • Cristian Bortolini
    Soremartec Italia S.r.l. (Ferrero S.p.a. group), P.le P. Ferrero 1, 12051 Alba, CN, Italy.
  • Chiara Cordero
    Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy.
  • Carlo Bicchi
    Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy.
  • Erica Liberto
    Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy. Electronic address: erica.liberto@unito.it.