Multi-class brain malignant tumor diagnosis in magnetic resonance imaging using convolutional neural networks.
Journal:
Brain research bulletin
PMID:
40180191
Abstract
Glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and brain metastases (BM) are common malignant brain tumors with similar radiological features, while the accurate and non-invasive dialgnosis is essential for selecting appropriate treatment plans. This study develops a deep learning model, FoTNet, to improve the automatic diagnosis accuracy of these tumors, particularly for the relatively rare PCNSL tumor. The model integrates a frequency-based channel attention layer and the focal loss to address the class imbalance issue caused by the limited samples of PCNSL. A multi-center MRI dataset was constructed by collecting and integrating data from Sir Run Run Shaw Hospital, along with public datasets from UPENN and TCGA. The dataset includes T1-weighted contrast-enhanced (T1-CE) MRI images from 58 GBM, 82 PCNSL, and 269 BM cases, which were divided into training and testing sets with a 5:2 ratio. FoTNet achieved a classification accuracy of 92.5 % and an average AUC of 0.9754 on the test set, significantly outperforming existing machine learning and deep learning methods in distinguishing among GBM, PCNSL, and BM. Through multiple validations, FoTNet has proven to be an effective and robust tool for accurately classifying these brain tumors, providing strong support for preoperative diagnosis and assisting clinicians in making more informed treatment decisions.