A robust ensemble framework for anticancer peptide classification using multi-model voting approach.
Journal:
Computers in biology and medicine
PMID:
40032410
Abstract
Anticancer peptides (ACPs) hold great potential for cancer therapeutics, yet accurately identifying them remains a challenging task due to the complexity of peptide sequences and their interactions with biological systems. In this study, we propose a novel machine learning-based framework for ACP classification, integrating multiple feature sets, including sequence composition, physicochemical properties, and embedding features derived from pre-trained language models. We evaluate the performance of various classifiers on benchmark datasets and compare our model against state-of-the-art methods. The results demonstrate that our model outperforms existing methods such as UniDL4BioPep, ACPred-Fuse, and iACP with an accuracy of 75.58%, an AUC of 0.8272, and an MCC of 0.5119. Our approach provides a more balanced sensitivity of 0.7384 and specificity of 0.773, ensuring robust identification of both ACPs and non-ACPs. These findings suggest that incorporating diverse feature sets can significantly enhance ACP classification, potentially facilitating the discovery of novel anticancer peptides for therapeutic applications.