Enhancing lung cancer detection through integrated deep learning and transformer models.
Journal:
Scientific reports
PMID:
40320438
Abstract
Lung cancer has been stated as one of the prevalent killers of cancer up to this present time and this clearly underlines the rationale for early diagnosis to enhance life expectancy of patients afflicted with the condition. The reasons behind the usage of the transformer and deep learning classifiers for the detection of lung cancer include accuracy, robustness along with the capability to handle and evaluate large data sets and much more. Such models can be more complex and can help to utilize multiple modalities of data to give extensive information that will be critical in ascertaining the right diagnosis at the right time. However, the existing works encounter several limitations including reliance on large annotated data, overfitting, high computation complexity, and interpretability. Third, the issue of the stability of these models' performance when applied to actual clinical datasets is still an open question; this is an even bigger issue that will greatly reduce the actual utilization of these models in clinical practice. To tackle these, we develop a novel Cancer Nexus Synergy (CanNS), which applies of A. Swin-Transformer UNet (SwiNet) Model for segmentation, Xception-LSTM GAN (XLG) CancerNet for classification, and Devilish Levy Optimization (DevLO) for fine-tuning parameters. This paper breaks new ground in that the presented elements are incorporated in a manner that co-operatively elevates the diagnostic capabilities while at the same time being computationally light and resilient. These are SwiNet for segmented analysis, XLG CancerNet for precise classification of the cases, and DevLO that optimizes the parameters of the lung cancer detection system, making the system more sensible and efficient. The performance outcomes indicate that the CanNS framework enhances the detection's accuracy, sensitivity, and specificity compared to the previous approaches.