Unsupervised Domain Adaptation for Low-Dose CT Reconstruction via Bayesian Uncertainty Alignment.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

Low-dose computed tomography (LDCT) image reconstruction techniques can reduce patient radiation exposure while maintaining acceptable imaging quality. Deep learning (DL) is widely used in this problem, but the performance of testing data (also known as target domain) is often degraded in clinical scenarios due to the variations that were not encountered in training data (also known as source domain). Unsupervised domain adaptation (UDA) of LDCT reconstruction has been proposed to solve this problem through distribution alignment. However, existing UDA methods fail to explore the usage of uncertainty quantification, which is crucial for reliable intelligent medical systems in clinical scenarios with unexpected variations. Moreover, existing direct alignment for different patients would lead to content mismatch issues. To address these issues, we propose to leverage a probabilistic reconstruction framework to conduct a joint discrepancy minimization between source and target domains in both the latent and image spaces. In the latent space, we devise a Bayesian uncertainty alignment to reduce the epistemic gap between the two domains. This approach reduces the uncertainty level of target domain data, making it more likely to render well-reconstructed results on target domains. In the image space, we propose a sharpness-aware distribution alignment (SDA) to achieve a match of second-order information, which can ensure that the reconstructed images from the target domain have similar sharpness to normal-dose CT (NDCT) images from the source domain. Experimental results on two simulated datasets and one clinical low-dose imaging dataset show that our proposed method outperforms other methods in quantitative and visualized performance.

Authors

  • Kecheng Chen
    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P.R.China;Health Big Data Institute of Big Data Center, University of Electronic Science and Technology of China, Chengdu 611731, P.R.China.
  • Jie Liu
    School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.
  • Renjie Wan
  • Victor Ho-Fun Lee
  • Varut Vardhanabhuti
    Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.
  • Hong Yan
  • Haoliang Li