Machine learning approaches for classifying major depressive disorder using biological and neuropsychological markers: A meta-analysis.

Journal: Neuroscience and biobehavioral reviews
Published Date:

Abstract

Traditional diagnostic methods for major depressive disorder (MDD), which rely on subjective assessments, may compromise diagnostic accuracy. In contrast, machine learning models have the potential to classify and diagnose MDD more effectively, reducing the risk of misdiagnosis associated with conventional methods. The aim of this meta-analysis is to evaluate the overall classification accuracy of machine learning models in MDD and examine the effects of machine learning algorithms, biomarkers, diagnostic comparison groups, validation procedures, and participant age on classification performance. As of September 2024, a total of 176 studies were ultimately included in the meta-analysis, encompassing a total of 60,926 participants. A random-effects model was applied to analyze the extracted data, resulting in an overall classification accuracy of 0.825 (95 % CI [0.810; 0.839]). Convolutional neural networks significantly outperformed support vector machines (SVM) when using electroencephalography and magnetoencephalography data. Additionally, SVM demonstrated significantly better performance with functional magnetic resonance imaging data compared to graph neural networks and gaussian process classification. The sample size was negatively correlated to classification accuracy. Furthermore, evidence of publication bias was also detected. Therefore, while this study indicates that machine learning models show high accuracy in distinguishing MDD from healthy controls and other psychiatric disorders, further research is required before these findings can be generalized to large-scale clinical practice.

Authors

  • Lin Zhang
    Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China. Electronic address: zhanglin@scu.edu.cn.
  • Liwen Jian
    School of Psychology, Central China Normal University, Wuhan 430079, China; Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430079, China.
  • Yiming Long
    School of Psychology, Central China Normal University, Wuhan 430079, China; Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430079, China.
  • Zhihong Ren
  • Vince D Calhoun
    Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico; Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico; Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico.
  • Ives Cavalcante Passos
    Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
  • Xinyu Tian
    Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
  • Yuhong Xiang