Moderate-to-severe anxiety symptoms are severe and common in patients with major depressive disorder (MDD) and have a significant impact on MDD patients and their families. The main objective of this study was to develop a risk prediction model for ...
Major depressive disorder (MDD) is a complex condition characterized by persistent depressed mood, loss of interest or pleasure, loss of energy or fatigue, and, in severe case, recurrent thoughts of death. Despite its prevalence, reliable diagnostic...
BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is being extensively explored as a potential primary screening tool for major depressive disorder (MDD) because of its portability, cost-effectiveness, and low susceptibility to motion artifac...
New developments in machine learning-based analysis of speech can be hypothesized to facilitate the long-term monitoring of major depressive disorder (MDD) during and after treatment. To test this hypothesis, we collected 550 speech samples from tele...
OBJECTIVES: To demonstrate an innovative method combining machine learning with comparative effectiveness research techniques and to investigate a hitherto unstudied question about the effectiveness of common prescribing patterns.
Non-specific response to treatment (NSRT) is the primary contributor to the failure of randomized clinical trials in major depressive disorder (MDD). The objective of this study is to develop artificial neural network (ANN) models to predict the indi...
Major depressive disorder (MDD) is a multifactorial disorder involving genetic and environmental factors, with unclear pathogenesis. This study aims to explore the pathogenic pathway of MDD and its relationship with immune responses and to discover i...
Major depressive disorder (MDD) is a widespread mental disorder that affects health. Many methods combining electroencephalography (EEG) with machine learning or deep learning have been proposed to objectively distinguish between MDD and healthy indi...
Depression presents a significant challenge to global mental health, often intertwined with factors including oxidative stress. Although the precise relationship with mitochondrial pathways remains elusive, recent advances in machine learning present...
Identifying likely placebo responders can help design more efficient clinical trials by stratifying participants, reducing sample size requirements, and enhancing the detection of true drug effects. In response to this need, we developed a deep convo...