FeaInfNet: Diagnosis of Medical Images With Feature-Driven Inference and Visual Explanations.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

Interpretable deep-learning models have received widespread attention in the field of image recognition. However, owing to the coexistence of medical-image categories and the challenge of identifying subtle decision-making regions, many proposed interpretable deep-learning models suffer from insufficient accuracy and interpretability in diagnosing images of medical diseases. Therefore, this study proposed a feature-driven inference network (FeaInfNet) that incorporates a feature-based network reasoning structure. Specifically, local feature masks (LFM) were developed to extract feature vectors, thereby providing global information for these vectors and enhancing the expressive ability of FeaInfNet. Second, FeaInfNet compares the similarity of the feature vector corresponding to each subregion image patch with the disease and normal prototype templates that may appear in the region. It then combines the comparison of each subregion when making the final diagnosis. This strategy simulates the diagnosis process of doctors, making the model interpretable during the reasoning process, while avoiding misleading results caused by the participation of normal areas during reasoning. Finally, we proposed adaptive dynamic masks (Adaptive-DM) to interpret feature vectors and prototypes into human-understandable image patches to provide an accurate visual interpretation. Extensive experiments on multiple publicly available medical datasets, including RSNA, iChallenge-PM, COVID-19, ChinaCXRSet, MontgomerySet, and CBIS-DDSM, demonstrated that our method achieves state-of-the-art classification accuracy and interpretability compared with baseline methods in the diagnosis of medical images. Additional ablation studies were performed to verify the effectiveness of each component.

Authors

  • Yitao Peng
  • Lianghua He
  • Die Hu
    Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610000, China. Electronic address: 15182510600@163.com.
  • Yihang Liu
  • Longzhen Yang
  • Shaohua Shang