Evaluation of deep learning-based scatter correction on a long-axial field-of-view PET scanner.
Journal:
European journal of nuclear medicine and molecular imaging
Published Date:
Feb 7, 2025
Abstract
OBJECTIVE: Long-axial field-of-view (LAFOV) positron emission tomography (PET) systems allow higher sensitivity, with an increased number of detected lines of response induced by a larger angle of acceptance. However this extended angle increases the number of multiple scatters and the scatter contribution within oblique planes. As scattering affects both quality and quantification of the reconstructed image, it is crucial to correct this effect with more accurate methods than the state-of-the-art single scatter simulation (SSS) that can reach its limits with such an extended field-of-view (FOV). In this work, which is an extension of our previous assessment of deep learning-based scatter estimation (DLSE) carried out on a conventional PET system, we aim to evaluate the DLSE method performance on LAFOV total-body PET.