Easy and Fast Discrimination of Female Sand Flies from Species with Infrared Spectroscopy and Multivariate Analysis.

Journal: Analytical chemistry
Published Date:

Abstract

Accurate identification of sandfly species is critical for controlling and preventing the spread of visceral leishmaniasis, a major public health concern in Latin America. Morphological similarities between female and present a significant challenge for traditional identification methods, highlighting the need for innovative alternative approaches. This study evaluates the potential of Fourier transform infrared (FTIR) spectroscopy associated with principal component analysis (PCA) and machine learning (ML) algorithms for species discrimination. Using vibrational bands predominantly assigned to lipid and carbohydrate molecules, the method achieved over 95% classification accuracy with the Linear support vector machine. Our results demonstrate that the 2970-2800 cm (C-H stretching) and 1154-1109 cm (C-O and C═C stretching) spectral ranges are particularly informative for distinguishing the species. The approach offers a rapid, cost-effective, and nondestructive solution for entomological classification, significantly enhancing vector surveillance capabilities. The integration of FTIR and machine learning (ML) techniques represents a transformative tool for entomological and epidemiological studies, providing valuable support for disease control strategies.

Authors

  • Matheus E P Barbosa
    Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, UFMS-Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
  • Miller Lacerda
    Optics and Photonic Lab (SISFOTON-UFMS), UFMS-Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva s/n, Campo Grande, MS 79070-900, Brazil.
  • Camila Calvani
    Optics and Photonics Laboratory - SISFOTON/UFMS, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, 79070-900, Brazil.
  • Thiago Franca
    Optics and Photonics Laboratory - SISFOTON/UFMS, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, 79070-900, Brazil.
  • Aline E Casaril
    Laboratório de Parasitologia Humana, Instituto de Biociências, UFMS-Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
  • Jucelei O M Infran
    Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, UFMS-Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
  • Alessandra G Oliveira
    Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, UFMS-Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
  • Cícero Cena
    Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil.