Comparing orthodontic pre-treatment information provided by large language models.

Journal: BMC oral health
Published Date:

Abstract

This study collected and screened the 50 most common pre-treatment consultation questions from adult orthodontic patients through clinical practice. Responses to these questions were generated using three large language models: Ernie Bot, ChatGPT, and Gemini. The responses were evaluated across six dimensions: Professional Accuracy (PA), Accuracy of Content(AC), Clarity and Comprehensibility (CC), Personalization and Relevance (PR), Information Completeness (IC), and Empathy and Patient-Centeredness (EHC). Results indicated that scores for each group in various dimensions primarily fell within the range of 3-4 points, with relatively few high-quality scores (5 points). While large language models demonstrate some capability in addressing open-ended questions, their use in medical consultation, particularly in orthodontic medicine, requires caution and further integration with professional guidance and verification. Future research and technological improvements should focus on enhancing AI(Artificial Intelligence) performance in accuracy, information completeness, and humanistic care to better meet the needs of diverse clinical scenarios.

Authors

  • Jingcheng Chen
    Jiaxing Nanhu District People's Hospital, Jiaxing, Zhejiang Province, 314000, People's Republic of China.
  • Xiangyu Ge
    College of Resources and Environment Science, Xinjiang University, Urumqi, 800046, China.
  • Chenyang Yuan
    The Second Hospital of Jiaxing, Jiaxing, Zhejiang Province, 314000, People's Republic of China.
  • Yanan Chen
    School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China.
  • Xiangyu Li
  • Xi Zhang
    The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning 530001, China.
  • Shixiang Chen
    School of Political Science and Public Administration, Wuhan University, Wuhan, Hubei, China.
  • Weiying Zheng
    College of Biomedical Engineering, Capital Medical University, 10 Xitoutiao Youanmen Fengtai, Beijing, 100069, People's Republic of China. zhengwyy@ccmu.edu.cn.
  • Chunqin Miao
    The Second Hospital of Jiaxing, Jiaxing, Zhejiang Province, 314000, People's Republic of China. Accusen1@Gmail.com.