Cloning Strategies for the Generation of Recombinant Capripoxvirus Through the Use of Screening and Selection Markers.
Journal:
Methods in molecular biology (Clifton, N.J.)
Published Date:
Jan 1, 2022
Abstract
The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is commonly used to generate capripoxvirus knockout viruses (KO), and is based on the targeting of a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses. An alternative step for the removal of both the EGFP and gpt cassettes and an optional selection step using CRISPR technology are also described.