Development of an electrical current stimulator for controlling biohybrid machines.

Journal: Scientific reports
Published Date:

Abstract

Soft and flexible robotics is an emerging field that attracts a huge interest due to its ability to produce bioinspired devices that are easily adaptable to the environment. Biohybrid Machines (BHM) represent a category of soft robots that integrate biological tissues, such as engineered muscle tissues, as actuating systems. Although these devices present several advantages in some applications, their proper actuation still represents a challenge for researchers. This paper focuses on the development of a portable and programmable electrical stimulator designed to control muscle fiber-based biohybrid actuators. The stimulator, made using off-the-shelf components, was designed as a stacking of three independent printed circuit boards (PCBs), connected vertically in order to result in a final device with compact dimensions of 59 mm 28 mm 25 mm. The stimulation circuit is capable of delivering currents up to 18 mA with a voltage compliance of ± 90 V, and a power consumption of approximately 1.3 W. The device's ability to induce twitch and tetanic contractions in a biohybrid actuator is demonstrated in different stimulation conditions. A practical application was also explored through a test case involving a flexible catheter prototype controlled by a biohybrid actuator, demonstrating its potential utility in a BHMs.

Authors

  • Riccardo Collu
  • Judith Fuentes
    Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.
  • Florencia Lezcano
    Institute for Bioengineering (IBEC), Barcellona, Spain.
  • Maria Crespo-Cuadraro
    Institute for Bioengineering (IBEC), Barcellona, Spain.
  • Andrea Bartolucci
    The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
  • Leonardo Ricotti
  • Lorenzo Vannozzi
    Dr. L. Vannozzi, T. Mazzocchi, Prof. L. Ricotti, The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, Pisa, 56127, Italy.
  • Samuel Sanchez
  • Stefano Lai
    Scuola Superiore Sant'Anna, Translational Neural Engineering Area, The BioRobotics Institute, Pontedera, Italy.
  • Massimo Barbaro