DOLPHIN advances single-cell transcriptomics beyond gene level by leveraging exon and junction reads.
Journal:
Nature communications
Published Date:
Jul 4, 2025
Abstract
The advent of single-cell sequencing has revolutionized the study of cellular dynamics, providing unprecedented resolution into the molecular states and heterogeneity of individual cells. However, the rich potential of exon-level information and junction reads within single cells remains underutilized. Conventional gene-count methods overlook critical exon and junction data, limiting the quality of cell representation and downstream analyses such as subpopulation identification and alternative splicing detection. We introduce DOLPHIN, a deep learning method that integrates exon-level and junction read data, representing genes as graph structures. These graphs are processed by a variational graph autoencoder to improve cell embeddings. DOLPHIN not only demonstrates superior performance in cell clustering, biomarker discovery, and alternative splicing detection but also provides a distinct capability to detect subtle transcriptomic differences at the exon level that are often masked in gene-level analyses. By examining cellular dynamics with enhanced resolution, DOLPHIN provides new insights into disease mechanisms and potential therapeutic targets.