A natural language processing approach to support biomedical data harmonization: Leveraging large language models.
Journal:
PloS one
Published Date:
Jul 24, 2025
Abstract
BACKGROUND: Biomedical research requires large, diverse samples to produce unbiased results. Retrospective data harmonization is often used to integrate existing datasets to create these samples, but the process is labor-intensive. Automated methods for matching variables across datasets can accelerate this process, particularly when harmonizing datasets with numerous variables and varied naming conventions. Research in this area has been limited, primarily focusing on lexical matching and ontology-based semantic matching. We aimed to develop new methods, leveraging large language models (LLMs) and ensemble learning, to automate variable matching.