Probability-Based Early Warning for Seasonal Influenza in China: Model Development Study.
Journal:
JMIR medical informatics
Published Date:
Aug 6, 2025
Abstract
BACKGROUND: Seasonal influenza is a major global public health concern, leading to escalated morbidity and mortality rates. Traditional early warning models rely on binary (0/1) classification methods, which issue alerts only when predefined thresholds are crossed. However, these models exhibit inflexibility, often leading to false alarms or missed warnings and failing to provide granular risk assessments essential for decision-making. Therefore, we propose a probability-based early warning system using machine learning to mitigate these limitations and to offer continuous risk estimations of alerts (0-1 variable) instead of rigid threshold-based alerts. Based on probabilistic prediction, public health experts can make more flexible decisions in combination with the actual situation, significantly reducing the uncertainty and pressure in the decision-making process and reducing the waste of public health resources and the risk of social panic.