Adaptive batch-fusion self-supervised learning for ultrasound image pretraining.
Journal:
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Published Date:
Jul 8, 2025
Abstract
Medical self-supervised learning eliminates the reliance on labels, making feature extraction simple and efficient. The intricate design of pretext tasks in single-modal self-supervised analysis presents challenges, however, compounded by an excessive dependency on data augmentation, leading to a bottleneck in medical self-supervised learning research. Consequently, this paper reanalyzes the feature learnability introduced by data augmentation strategies in medical image self-supervised learning. We introduce an adaptive self-supervised learning data augmentation method from the perspective of batch fusion. Moreover, we propose a conv embedding block for learning the incremental representation between these batches. We tested 5 fused data tasks proposed by previous researchers and it achieved a linear classification protocol accuracy of 94.25% with only 150 self-supervised feature training in Vision Transformer(ViT), which is the best among the same methods. With a detailed ablation study on previous augmentation strategies, the results indicate that the proposed medical data augmentation strategy in this paper effectively represents ultrasound data features in the self-supervised learning process. The code and weights could be found at here.