MDEANet: A multi-scale deep enhanced attention net for popliteal fossa segmentation in ultrasound images.

Journal: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Published Date:

Abstract

Popliteal sciatic nerve block is a widely used technique for lower limb anesthesia. However, despite ultrasound guidance, the complex anatomical structures of the popliteal fossa can present challenges, potentially leading to complications. To accurately identify the bifurcation of the sciatic nerve for nerve blockade, we propose MDEANet, a deep learning-based segmentation network designed for the precise localization of nerves, muscles, and arteries in ultrasound images of the popliteal region. MDEANet incorporates Cascaded Multi-scale Atrous Convolutions (CMAC) to enhance multi-scale feature extraction, Enhanced Spatial Attention Mechanism (ESAM) to focus on key anatomical regions, and Cross-level Feature Fusion (CLFF) to improve contextual representation. This integration markedly improves segmentation of nerves, muscles, and arteries. Experimental results demonstrate that MDEANet achieves an average Intersection over Union (IoU) of 88.60% and a Dice coefficient of 93.95% across all target structures, outperforming state-of-the-art models by 1.68% in IoU and 1.66% in Dice coefficient. Specifically, for nerve segmentation, the Dice coefficient reaches 93.31%, underscoring the effectiveness of our approach. MDEANet has the potential to provide decision-support assistance for anesthesiologists, thereby enhancing the accuracy and efficiency of ultrasound-guided nerve blockade procedures.

Authors

  • Fangfang Chen
    College of Information Science and Engineering, Xinjiang University, Urumqi, Xinjiang, China.
  • Wei Fang
    GNSS Research Center, Wuhan University, Wuhan, 430079, China.
  • Qinghua Wu
    The First Hospital of Putian, Putian 351100, China.
  • Miao Zhou
    Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu, China.
  • Wenhui Guo
    Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China.
  • Liangqing Lin
    The First Hospital of Putian, Putian 351100, China. Electronic address: 232472774@st.usst.edu.cn.
  • Zhanheng Chen
    College of Mathematics and Statistics, Yili Normal University, Yining, 835000 Xinjiang, China.
  • Zui Zou
    Faculty of Anesthesiology, Changhai Hospital of Naval Medical University, Shanghai, China; School of Anesthesiology, Naval Medical University, Shanghai, China. Electronic address: zouzui@smmu.edu.cn.