Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations.

Journal: Bioinformatics (Oxford, England)
Published Date:

Abstract

MOTIVATION: Detecting positive selection in genomic regions is a recurrent topic in natural population genetic studies. However, there is little consistency among the regions detected in several genome-wide scans using different tests and/or populations. Furthermore, few methods address the challenge of classifying selective events according to specific features such as age, intensity or state (completeness).

Authors

  • Marc Pybus
    Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Spain.
  • Pierre Luisi
    Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Spain, Department of Biology, Stanford University, Stanford, CA 94305, USA.
  • Giovanni Marco Dall'Olio
    Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Spain, Division of Cancer Studies, King's College of London, London SE1 1UL, UK and.
  • Manu Uzkudun
    Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Spain.
  • Hafid Laayouni
    Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Spain, Departament de Genètica i de Microbiologia, Universitat AutonĂ²ma de Barcelona, Bellaterra 8193, Spain.
  • Jaume Bertranpetit
    Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Spain.
  • Johannes Engelken
    Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona 08003, Spain.