Analyzing animal behavior via classifying each video frame using convolutional neural networks.

Journal: Scientific reports
Published Date:

Abstract

High-throughput analysis of animal behavior requires software to analyze videos. Such software analyzes each frame individually, detecting animals' body parts. But the image analysis rarely attempts to recognize "behavioral states"-e.g., actions or facial expressions-directly from the image instead of using the detected body parts. Here, we show that convolutional neural networks (CNNs)-a machine learning approach that recently became the leading technique for object recognition, human pose estimation, and human action recognition-were able to recognize directly from images whether Drosophila were "on" (standing or walking) or "off" (not in physical contact with) egg-laying substrates for each frame of our videos. We used multiple nets and image transformations to optimize accuracy for our classification task, achieving a surprisingly low error rate of just 0.072%. Classifying one of our 8 h videos took less than 3 h using a fast GPU. The approach enabled uncovering a novel egg-laying-induced behavior modification in Drosophila. Furthermore, it should be readily applicable to other behavior analysis tasks.

Authors

  • Ulrich Stern
    Independent researcher, Durham, NC 27705.
  • Ruo He
    Dept. of Neurobiology, Duke University, Durham, NC 27710.
  • Chung-Hui Yang
    Dept. of Neurobiology, Duke University, Durham, NC 27710.