Medical image segmentation via atlases and fuzzy object models: Improving efficacy through optimum object search and fewer models.
Journal:
Medical physics
Published Date:
Jan 1, 2016
Abstract
PURPOSE: Statistical object shape models (SOSMs), known as probabilistic atlases, are popular in medical image segmentation. They register an image into the atlas coordinate system, such that a desired object can be delineated from the constraints of its shape model. While this strategy facilitates segmenting objects with even weak-boundary contrast, it tends to require more models per object to cope with possible registration errors. Fuzzy object shape models (FOSMs) gain substantial speed by avoiding image registration and placing more relaxed model constraints with optimum object search. However, they tend to require stronger object boundary contrast for effective delineation. In this work, the authors show that optimum object search, the essential underpinning of FOSMs, can improve segmentation efficacy of SOSMs with fewer models per object.