An effective 3-fingered augmenting exoskeleton for the human hand.
Journal:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:
Aug 1, 2016
Abstract
Every year, thousands of Americans suffer from pathological and traumatic events that result in loss of dexterity and strength of the hand. Although many supportive devices have been designed to restore functional hand movement, most are very complex and expensive. The goal of this project was to design and implement a cost-effective, electrically powered exoskeleton for the human hand that could improve grasping strength. A 3-D printed thermoplastic exoskeleton that allowed independent and enhanced movement of the index, middle and ring fingers was constructed. In addition, a 3-D printed structure was designed to house three linear actuators, an Arduino-based control system, and a power supply. A single force sensing resistor was located on the lower inner-surface of the index fingertip which was used to proportionally activate the three motors, one motor per finger, as a function of finger force applied to the sensor. The device was tested on 4 normal human subjects. Results showed that the activation of the motor control system significantly reduced the muscle effort needed to maintain a sub-maximal grasp effort.