Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation.

Journal: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Published Date:

Abstract

We present a novel method to segment retinal images using ensemble learning based convolutional neural network (CNN) architectures. An entropy sampling technique is used to select informative points thus reducing computational complexity while performing superior to uniform sampling. The sampled points are used to design a novel learning framework for convolutional filters based on boosting. Filters are learned in several layers with the output of previous layers serving as the input to the next layer. A softmax logistic classifier is subsequently trained on the output of all learned filters and applied on test images. The output of the classifier is subject to an unsupervised graph cut algorithm followed by a convex hull transformation to obtain the final segmentation. Our proposed algorithm for optic cup and disc segmentation outperforms existing methods on the public DRISHTI-GS data set on several metrics.

Authors

  • Julian Zilly
    Department of Mechanical Engineering, ETH Zurich, Switzerland.
  • Joachim M Buhmann
    Department of Computer Science, ETH Zurich, Switzerland.
  • Dwarikanath Mahapatra
    Department of Computer Science, ETH Zurich, Switzerland. Electronic address: dwarikanath.mahapatra@inf.ethz.ch.