Evaluating semantic similarity between Chinese biomedical terms through multiple ontologies with score normalization: An initial study.
Journal:
Journal of biomedical informatics
Published Date:
Nov 1, 2016
Abstract
BACKGROUND: Semantic similarity estimation significantly promotes the understanding of natural language resources and supports medical decision making. Previous studies have investigated semantic similarity and relatedness estimation between biomedical terms through resources in English, such as SNOMED-CT or UMLS. However, very limited studies focused on the Chinese language, and technology on natural language processing and text mining of medical documents in China is urgently needed. Due to the lack of a complete and publicly available biomedical ontology in China, we only have access to several modest-sized ontologies with no overlaps. Although all these ontologies do not constitute a complete coverage of biomedicine, their coverage of their respective domains is acceptable. In this paper, semantic similarity estimations between Chinese biomedical terms using these multiple non-overlapping ontologies were explored as an initial study.