Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix.

Journal: Oncotarget
Published Date:

Abstract

Self-interacting Proteins (SIPs) play an essential role in a wide range of biological processes, such as gene expression regulation, signal transduction, enzyme activation and immune response. Because of the limitations for experimental self-interaction proteins identification, developing an effective computational method based on protein sequence to detect SIPs is much important. In the study, we proposed a novel computational approach called RVMBIGP that combines the Relevance Vector Machine (RVM) model and Bi-gram probability (BIGP) to predict SIPs based on protein sequence. The proposed prediction model includes as following steps: (1) an effective feature extraction method named BIGP is used to represent protein sequences on Position Specific Scoring Matrix (PSSM); (2) Principal Component Analysis (PCA) method is employed for integrating the useful information and reducing the influence of noise; (3) the robust classifier Relevance Vector Machine (RVM) is used to carry out classification. When performed on yeast and human datasets, the proposed RVMBIGP model can achieve very high accuracies of 95.48% and 98.80%, respectively. The experimental results show that our proposed method is very promising and may provide a cost-effective alternative for SIPs identification. In addition, to facilitate extensive studies for future proteomics research, the RVMBIGP server is freely available for academic use at http://219.219.62.123:8888/RVMBIGP.

Authors

  • Ji-Yong An
    School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 21116, China.
  • Zhu-Hong You
    Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China. zhuhongyou@ms.xjb.ac.cn.
  • Xing Chen
    School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, 221116, China. xingchen@amss.ac.cn.
  • De-Shuang Huang
  • Zheng-Wei Li
    School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 21116, China.
  • Gang Liu
    Department of Interventional Radiology, Qinghai Red Cross Hospital, Xining, Qinghai, China.
  • Yin Wang
    State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China.