Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

Journal: BMC bioinformatics
Published Date:

Abstract

BACKGROUND: Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved.

Authors

  • Antonio Martín-Navarro
    Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, Zaragoza, 50013, Spain.
  • Andrés Gaudioso-Simón
    Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, Zaragoza, 50013, Spain.
  • Jorge Álvarez-Jarreta
    Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, C/ María de Luna 1, Zaragoza, 50018, Spain.
  • Julio Montoya
    Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, Zaragoza, 50013, Spain.
  • Elvira Mayordomo
    Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, C/ María de Luna 1, Zaragoza, 50018, Spain. elvira@unizar.es.
  • Eduardo Ruiz-Pesini
    Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, Zaragoza, 50013, Spain. eduruiz@unizar.es.