Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery.

Journal: Scientific reports
PMID:

Abstract

Quantitative structure-activity relationship modeling using machine learning techniques constitutes a complex computational problem, where the identification of the most informative molecular descriptors for predicting a specific target property plays a critical role. Two main general approaches can be used for this modeling procedure: feature selection and feature learning. In this paper, a performance comparative study of two state-of-art methods related to these two approaches is carried out. In particular, regression and classification models for three different issues are inferred using both methods under different experimental scenarios: two drug-like properties, such as blood-brain-barrier and human intestinal absorption, and enantiomeric excess, as a measurement of purity used for chiral substances. Beyond the contrastive analysis of feature selection and feature learning methods as competitive approaches, the hybridization of these strategies is also evaluated based on previous results obtained in material sciences. From the experimental results, it can be concluded that there is not a clear winner between both approaches because the performance depends on the characteristics of the compound databases used for modeling. Nevertheless, in several cases, it was observed that the accuracy of the models can be improved by combining both approaches when the molecular descriptor sets provided by feature selection and feature learning contain complementary information.

Authors

  • Ignacio Ponzoni
    Instituto de Ciencias e Ingeniería de la Computación (ICIC), Universidad Nacional del Sur-CONICET, San Andrés 800 - Campus Palihue, 8000, Bahía Blanca, Argentina. ip@cs.uns.edu.ar.
  • Víctor Sebastián-Pérez
    Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
  • Carlos Requena-Triguero
    Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
  • Carlos Roca
    Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
  • María J Martínez
    Instituto de Ciencias e Ingeniería de la Computación (ICIC), Universidad Nacional del Sur-CONICET, San Andrés 800 - Campus Palihue, 8000, Bahía Blanca, Argentina.
  • Fiorella Cravero
    Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur-CONICET, Co. La Carrindanga km.7, CC 717, Bahía Blanca, Argentina.
  • Mónica F Díaz
    Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur-CONICET, Co. La Carrindanga km.7, CC 717, Bahía Blanca, Argentina.
  • Juan A Páez
    Instituto de Química Médica (IQM-CSIC). C/Juan de la Cierva, 3, 28006 Madrid, Spain.
  • Ramón Gómez Arrayás
    Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM). Cantoblanco, 28049, Madrid, Spain.
  • Javier Adrio
    Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM). Cantoblanco, 28049, Madrid, Spain.
  • Nuria E Campillo
    Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC). C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.