Artificial Intelligence: Threat or Boon to Radiologists?

Journal: Journal of the American College of Radiology : JACR
PMID:

Abstract

The development and integration of machine learning/artificial intelligence into routine clinical practice will significantly alter the current practice of radiology. Changes in reimbursement and practice patterns will also continue to affect radiology. But rather than being a significant threat to radiologists, we believe these changes, particularly machine learning/artificial intelligence, will be a boon to radiologists by increasing their value, efficiency, accuracy, and personal satisfaction.

Authors

  • Michael Recht
    Department of Radiology, NYU Langone Health, New York, New York. Electronic address: michael.recht@nyumc.org.
  • R Nick Bryan
    Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (J.D.R., L.X., A.K., J.M.E., T.C., I.M.N., S.M., J.C.G.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (J.D.R., A.M.R.); Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, Pa (X.L., J.W.); University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.T.D.); Mecklenburg Radiology Associates, Charlotte, NC (E.J.B.); Department of Radiology, University of Texas, Austin, Tex (R.N.B.); and Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pa (I.M.N.).