Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

Journal: Medical physics
Published Date:

Abstract

PURPOSE: Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images.

Authors

  • Tobias Fechter
    Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Sonja Adebahr
    Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Dimos Baltas
    Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Ismail Ben Ayed
    LIVIA Laboratory, École de technologie supérieure (ETS), Montreal, QC, Canada.
  • Christian Desrosiers
    LIVIA Laboratory, École de technologie supérieure (ETS), Montreal, QC, Canada.
  • Jose Dolz
    AQUILAB, Biocentre A. Fleming, 250 rue Salvador Allende, 59120, Loos les Lille, France. jose.dolz.upv@gmail.com.