Prediction of opioid dose in cancer pain patients using genetic profiling: not yet an option with support vector machine learning.
Journal:
BMC research notes
PMID:
29374492
Abstract
OBJECTIVE: Use of opioids for pain management has increased over the past decade; however, inadequate analgesic response is common. Genetic variability may be related to opioid efficacy, but due to the many possible combinations and variables, statistical computations may be difficult. This study investigated whether data processing with support vector machine learning could predict required opioid dose in cancer pain patients, using genetic profiling. Eighteen single nucleotide polymorphisms (SNPs) within the µ and δ opioid receptor genes and the catechol-O-methyltransferase gene were selected for analysis.