AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Receptors, Opioid, mu

Showing 1 to 4 of 4 articles

Clear Filters

Analysis of Drug Design for a Selection of G Protein-Coupled Neuro- Receptors Using Neural Network Techniques.

Current computer-aided drug design
A study is presented on how well possible drug-molecules can be predicted with respect to their function and binding to a selection of neuro-receptors by the use of artificial neural networks. The ligands investigated in this study are chosen to be c...

Prediction of opioid dose in cancer pain patients using genetic profiling: not yet an option with support vector machine learning.

BMC research notes
OBJECTIVE: Use of opioids for pain management has increased over the past decade; however, inadequate analgesic response is common. Genetic variability may be related to opioid efficacy, but due to the many possible combinations and variables, statis...

Machine Learned Classification of Ligand Intrinsic Activities at Human μ-Opioid Receptor.

ACS chemical neuroscience
Opioids are small-molecule agonists of μ-opioid receptor (μOR), while reversal agents such as naloxone are antagonists of μOR. Here, we developed machine learning (ML) models to classify the intrinsic activities of ligands at the human μOR based on t...

Developing predictive models for µ opioid receptor binding using machine learning and deep learning techniques.

Experimental biology and medicine (Maywood, N.J.)
Opioids exert their analgesic effect by binding to the µ opioid receptor (MOR), which initiates a downstream signaling pathway, eventually inhibiting pain transmission in the spinal cord. However, current opioids are addictive, often leading to overd...