A study is presented on how well possible drug-molecules can be predicted with respect to their function and binding to a selection of neuro-receptors by the use of artificial neural networks. The ligands investigated in this study are chosen to be c...
OBJECTIVE: Use of opioids for pain management has increased over the past decade; however, inadequate analgesic response is common. Genetic variability may be related to opioid efficacy, but due to the many possible combinations and variables, statis...
Opioids are small-molecule agonists of μ-opioid receptor (μOR), while reversal agents such as naloxone are antagonists of μOR. Here, we developed machine learning (ML) models to classify the intrinsic activities of ligands at the human μOR based on t...
Experimental biology and medicine (Maywood, N.J.)
40177220
Opioids exert their analgesic effect by binding to the µ opioid receptor (MOR), which initiates a downstream signaling pathway, eventually inhibiting pain transmission in the spinal cord. However, current opioids are addictive, often leading to overd...