Multiple Instance Dictionary Learning for Beat-to-Beat Heart Rate Monitoring From Ballistocardiograms.

Journal: IEEE transactions on bio-medical engineering
Published Date:

Abstract

A multiple instance dictionary learning approach, dictionary learning using functions of multiple instances (DL-FUMI), is used to perform beat-to-beat heart rate estimation and to characterize heartbeat signatures from ballistocardiogram (BCG) signals collected with a hydraulic bed sensor. DL-FUMI estimates a "heartbeat concept" that represents an individual's personal ballistocardiogram heartbeat pattern. DL-FUMI formulates heartbeat detection and heartbeat characterization as a multiple instance learning problem to address the uncertainty inherent in aligning BCG signals with ground truth during training. Experimental results show that the estimated heartbeat concept obtained by DL-FUMI is an effective heartbeat prototype and achieves superior performance over comparison algorithms.

Authors

  • Changzhe Jiao
  • Bo-Yu Su
  • Princess Lyons
  • Alina Zare
  • K C Ho
  • Marjorie Skubic