Leveraging Wikipedia knowledge to classify multilingual biomedical documents.

Journal: Artificial intelligence in medicine
Published Date:

Abstract

This article presents a classifier that leverages Wikipedia knowledge to represent documents as vectors of concepts weights, and analyses its suitability for classifying biomedical documents written in any language when it is trained only with English documents. We propose the cross-language concept matching technique, which relies on Wikipedia interlanguage links to convert concept vectors between languages. The performance of the classifier is compared to a classifier based on machine translation, and two classifiers based on MetaMap. To perform the experiments, we created two multilingual corpus. The first one, Multi-Lingual UVigoMED (ML-UVigoMED) is composed of 23,647 Wikipedia documents about biomedical topics written in English, German, French, Spanish, Italian, Galician, Romanian, and Icelandic. The second one, English-French-Spanish-German UVigoMED (EFSG-UVigoMED) is composed of 19,210 biomedical abstract extracted from MEDLINE written in English, French, Spanish, and German. The performance of the approach proposed is superior to any of the state-of-the art classifier in the benchmark. We conclude that leveraging Wikipedia knowledge is of great advantage in tasks of multilingual classification of biomedical documents.

Authors

  • Marcos Antonio Mouriño García
    Department of Telematics Engineering, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain. Electronic address: marcos@gist.uvigo.es.
  • Roberto Pérez Rodríguez
    Department of Telematics Engineering, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain. Electronic address: roberto.perez@gist.uvigo.es.
  • Luis Anido Rifón
    Department of Telematics Engineering, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain. Electronic address: lanido@gist.uvigo.es.