Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis.

Journal: The British journal of dermatology
Published Date:

Abstract

BACKGROUND: Application of deep-learning technology to skin cancer classification can potentially improve the sensitivity and specificity of skin cancer screening, but the number of training images required for such a system is thought to be extremely large.

Authors

  • Y Fujisawa
    Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577.
  • Y Otomo
    Kyocera Communications System Co., Ltd, Kyoto, Japan.
  • Y Ogata
    KCCS Mobile Engineering Co., Ltd, Tokyo, Japan.
  • Y Nakamura
    Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577.
  • R Fujita
    Kyocera Communications System Co., Ltd, Kyoto, Japan.
  • Y Ishitsuka
    Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577.
  • R Watanabe
    Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577.
  • N Okiyama
    Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577.
  • K Ohara
    Dermatology, Akasaka Toranomon Clinic, Tokyo, Japan.
  • M Fujimoto
    Dermatology Division, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8577.