Integrating network topology, gene expression data and GO annotation information for protein complex prediction.

Journal: Journal of bioinformatics and computational biology
PMID:

Abstract

The prediction of protein complexes based on the protein interaction network is a fundamental task for the understanding of cellular life as well as the mechanisms underlying complex disease. A great number of methods have been developed to predict protein complexes based on protein-protein interaction (PPI) networks in recent years. However, because the high throughput data obtained from experimental biotechnology are incomplete, and usually contain a large number of spurious interactions, most of the network-based protein complex identification methods are sensitive to the reliability of the PPI network. In this paper, we propose a new method, Identification of Protein Complex based on Refined Protein Interaction Network (IPC-RPIN), which integrates the topology, gene expression profiles and GO functional annotation information to predict protein complexes from the reconstructed networks. To demonstrate the performance of the IPC-RPIN method, we evaluated the IPC-RPIN on three PPI networks of Saccharomycescerevisiae and compared it with four state-of-the-art methods. The simulation results show that the IPC-RPIN achieved a better result than the other methods on most of the measurements and is able to discover small protein complexes which have traditionally been neglected.

Authors

  • Wei Zhang
    The First Affiliated Hospital of Nanchang University, Nanchang, China.
  • Jia Xu
    Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P.R. China.
  • Yuanyuan Li
    Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Xiufen Zou