Reliable Label-Efficient Learning for Biomedical Image Recognition.

Journal: IEEE transactions on bio-medical engineering
Published Date:

Abstract

The use of deep neural networks for biomedical image analysis requires a sufficient number of labeled datasets. To acquire accurate labels as the gold standard, multiple observers with specific expertise are required for both annotation and proofreading. This process can be time-consuming and labor-intensive, making high-quality, and large-annotated biomedical datasets difficult. To address this problem, we propose a deep active learning framework that enables the active selection of both informative queries and reliable experts. To measure the uncertainty of the unlabeled data, a dropout-based strategy is integrated with a similarity criterion for both data selection and random error elimination. To select the reliable labelers, we adopt an expertise estimator to learn the expertise levels of labelers via offline-testing and online consistency evaluation. The proposed method is applied to classification tasks on two types of medical images including confocal endomicroscopy images and gastrointestinal endoscopic images. The annotations are acquired from multiple labelers with diverse levels of expertise. The experiments demonstrate the efficiency and promising performance of the proposed method compared to a set of baseline methods.

Authors

  • Yun Gu
    Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, SEIEE Building 2-427, No. 800, Dongchuan Road, Minhang District, Shanghai, 200240 China.
  • Mali Shen
  • Jie Yang
    Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China.
  • Guang-Zhong Yang
    Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China. dgunning@fb.com gzyang@sjtu.edu.cn.