AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
Journal:
Medical physics
Published Date:
Dec 17, 2018
Abstract
PURPOSE: Radiation therapy (RT) is a common treatment option for head and neck (HaN) cancer. An important step involved in RT planning is the delineation of organs-at-risks (OARs) based on HaN computed tomography (CT). However, manually delineating OARs is time-consuming as each slice of CT images needs to be individually examined and a typical CT consists of hundreds of slices. Automating OARs segmentation has the benefit of both reducing the time and improving the quality of RT planning. Existing anatomy autosegmentation algorithms use primarily atlas-based methods, which require sophisticated atlas creation and cannot adequately account for anatomy variations among patients. In this work, we propose an end-to-end, atlas-free three-dimensional (3D) convolutional deep learning framework for fast and fully automated whole-volume HaN anatomy segmentation.