Learning-based CBCT correction using alternating random forest based on auto-context model.
Journal:
Medical physics
Published Date:
Dec 11, 2018
Abstract
PURPOSE: Quantitative Cone Beam CT (CBCT) imaging is increasing in demand for precise image-guided radiotherapy because it provides a foundation for advanced image-guided techniques, including accurate treatment setup, online tumor delineation, and patient dose calculation. However, CBCT is currently limited only to patient setup in the clinic because of the severe issues in its image quality. In this study, we develop a learning-based approach to improve CBCT's image quality for extended clinical applications.