Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks.

Journal: IEEE transactions on bio-medical engineering
PMID:

Abstract

OBJECTIVE: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD).

Authors

  • Feng Shi
    Department of Research and Development, Shanghai United Imaging Intelligence, Co., Ltd. Shanghai, China.
  • Qi Yang
    Department of Radiology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun 130021, China (Y.W., M.L., Z.M., J.W., K.H., Q.Y., L.Z., L.M., H.Z.).
  • Xiuhai Guo
  • Touseef Ahmad Qureshi
  • Zixiao Tian
  • Huijuan Miao
  • Damini Dey
    Departments of Imaging and Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238, Los Angeles, CA, 90048, USA.
  • Debiao Li
  • Zhaoyang Fan