Functional brain networks and neuroanatomy underpinning nausea severity can predict nausea susceptibility using machine learning.
Journal:
The Journal of physiology
PMID:
30629751
Abstract
KEY POINTS: Nausea is an adverse experience characterised by alterations in autonomic and cerebral function. Susceptibility to nausea is difficult to predict, but machine learning has yet to be applied to this field of study. The severity of nausea that individuals experience is related to the underlying morphology (shape) of the subcortex, namely of the amygdala, caudate and putamen; a functional brain network related to nausea severity was identified, which included the thalamus, cingulate cortices (anterior, mid- and posterior), caudate nucleus and nucleus accumbens. Sympathetic nervous system function and sympathovagal balance, by heart rate variability, was closely related to both this nausea-associated anatomical variation and the functional connectivity network, and machine learning accurately predicted susceptibility or resistance to nausea. These novel anatomical and functional brain biomarkers for nausea severity may permit objective identification of individuals susceptible to nausea, using artificial intelligence/machine learning; brain data may be useful to identify individuals more susceptible to nausea.