Image domain dual material decomposition for dual-energy CT using butterfly network.
Journal:
Medical physics
Published Date:
Apr 1, 2019
Abstract
PURPOSE: Dual-energy CT (DECT) has been increasingly used in imaging applications because of its capability for material differentiation. However, material decomposition suffers from magnified noise from two CT images of independent scans, leading to severe degradation of image quality. Existing algorithms exhibit suboptimal decomposition performance because they fail to fully depict the mapping relationship between DECT images and basis materials under noisy conditions. Convolutional neural network exhibits great promise in the modeling of data coupling and has recently become an important technique in medical imaging application. Inspired by its impressive potential, we developed a new Butterfly network to perform the image domain dual material decomposition.