Higher Order Statistical Analysis for Thyroid Texture Classification and Segmentation in 2D ultrasound Images.
Journal:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:
Jul 1, 2019
Abstract
Ultrasound (US) imaging is one of the most cost-effective imaging modality that utilizes sound waves for generating medical images of anatomical structure. However, the presence of speckle noise and low contrast in the US images makes it difficult to use for proper classification of anatomical structures in clinical scenarios. Hence, it is important to devise a method that is robust and accurate even in the presence of speckle noise and is not affected by the low image contrast. In this work, a novel approach for thyroid texture characterization based on extracting features utilizing higher order spectral analysis (HOSA) was used. A Support Vector Machine (SVM) was applied on the extracted features to classify the thyroid texture. Since HOSA is a well suited technique for processing non-Gaussian data involving non-linear dynamics, good classification of thyroid texture can be obtained in US images as they also contain non-Gaussian Speckle noise and nonlinear characteristics. A final accuracy of 93.27%, sensitivity of 0.92 and specificity of 0.62 were obtained using the proposed approach.