Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach.
Journal:
Pediatric research
PMID:
31349360
Abstract
BACKGROUND: Severe traumatic brain injury (TBI) is a leading cause of mortality in children, but the accurate prediction of outcomes at the point of admission remains very challenging. Admission laboratory results are a promising potential source of prognostic data, but have not been widely explored in paediatric cohorts. Herein, we use machine-learning methods to analyse 14 different serum parameters together and develop a prognostic model to predict 6-month outcomes in children with severe TBI.