AIMC Topic: Patient Admission

Clear Filters Showing 1 to 10 of 72 articles

Predicting Emergency Severity Index (ESI) level, hospital admission, and admitting ward in an emergency department using data-driven machine learning.

BMC medical informatics and decision making
INTRODUCTION: Emergency departments (EDs) are critical for ensuring timely patient care, especially in triage, where accurate prioritisation is essential for patient safety and resource utilisation. Building on previous research, this study leverages...

Development of a machine learning-derived model to predict unplanned ICU admissions after major non-cardiac surgery.

BMC anesthesiology
BACKGROUND: Unplanned postoperative intensive care unit admissions (UIAs) are rare events that cause significant challenges to perioperative workflow. We describe the development of a machine-learning derived model to predict UIAs using only widely u...

AI Predictive Model of Mortality and Intensive Care Unit Admission in the COVID-19 Pandemic: Retrospective Population Cohort Study of 12,000 Patients.

Journal of medical Internet research
BACKGROUND: One of the main challenges with COVID-19 has been that although there are known factors associated with a worse prognosis, clinicians have been unable to predict which patients, with similar risk factors, will die or require intensive car...

Development of a machine learning model to identify the predictors of the neonatal intensive care unit admission.

Scientific reports
Scientists aim to create a system that can predict the likelihood of newborns being admitted to the neonatal intensive care unit (NICU) by combining various statistical methods. This prediction could potentially reduce the negative health outcomes, d...

Identifying real time surveillance indicators to estimate COVID-19 hospital admissions in Colorado during and after the public health emergency.

Scientific reports
Questions remain about how best to focus surveillance efforts for COVID-19 and other emerging respiratory diseases. We used an archive of COVID-19 data in Colorado from October 2020 to March 2024 to reconstruct seven real-time surveillance indicators...

Prediction of postoperative intensive care unit admission with artificial intelligence models in non-small cell lung carcinoma.

European journal of medical research
BACKGROUND: There is no standard practice for intensive care admission after non-small cell lung cancer surgery. In this study, we aimed to determine the need for intensive care admission after non-small cell lung cancer surgery with deep learning mo...

Predicting hospital admissions, ICU utilization, and prolonged length of stay among febrile pediatric emergency department patients using incomplete and imbalanced electronic health record (EHR) data strategies.

International journal of medical informatics
OBJECTIVE: Determine the efficacy of commonly used approaches to handling missing and/or imbalanced Electronic Health Record (EHR) data on the performance of predictive models targeting risk of admission, intensive care unit (ICU) use, or prolonged l...

Development and validation of interpretable machine learning models for triage patients admitted to the intensive care unit.

PloS one
OBJECTIVES: Developing and validating interpretable machine learning (ML) models for predicting whether triaged patients need to be admitted to the intensive care unit (ICU).

Predicting emergency department admissions using a machine-learning algorithm: a proof of concept with retrospective study.

BMC emergency medicine
INTRODUCTION: Overcrowding in emergency departments (ED) is a major public health issue, leading to increased workload and exhaustion for the teams, resulting poor outcomes. It seems interesting to be able to predict the admissions of patients in the...