AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Patient Admission

Showing 1 to 10 of 61 articles

Clear Filters

Predicting onward care needs at admission to reduce discharge delay using explainable machine learning.

Scientific reports
Early identification of patients who require onward referral to social care can prevent delays to discharge from hospital. We introduce an explainable machine learning (ML) model to identify potential social care needs at the first point of admission...

Predicting paediatric asthma exacerbations with machine learning: a systematic review with meta-analysis.

European respiratory review : an official journal of the European Respiratory Society
BACKGROUND: Asthma exacerbations in children pose a significant burden on healthcare systems and families. While traditional risk assessment tools exist, artificial intelligence (AI) offers the potential for enhanced prediction models.

Hospital Length of Stay Prediction for Planned Admissions Using Observational Medical Outcomes Partnership Common Data Model: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Accurate hospital length of stay (LoS) prediction enables efficient resource management. Conventional LoS prediction models with limited covariates and nonstandardized data have limited reproducibility when applied to the general populati...

Proactive care management of AI-identified at-risk patients decreases preventable admissions.

The American journal of managed care
OBJECTIVES: We assessed whether proactive care management for artificial intelligence (AI)-identified at-risk patients reduced preventable emergency department (ED) visits and hospital admissions (HAs).

Early prediction of intensive care unit admission in emergency department patients using machine learning.

Australian critical care : official journal of the Confederation of Australian Critical Care Nurses
BACKGROUND: The timely identification and transfer of critically ill patients from the emergency department (ED) to the intensive care unit (ICU) is important for patient care and ED workflow practices.

Performance of machine learning versus the national early warning score for predicting patient deterioration risk: a single-site study of emergency admissions.

BMJ health & care informatics
OBJECTIVES: Increasing operational pressures on emergency departments (ED) make it imperative to quickly and accurately identify patients requiring urgent clinical intervention. The widespread adoption of electronic health records (EHR) makes rich fe...

Development and validation of interpretable machine learning models for triage patients admitted to the intensive care unit.

PloS one
OBJECTIVES: Developing and validating interpretable machine learning (ML) models for predicting whether triaged patients need to be admitted to the intensive care unit (ICU).

Predicting emergency department admissions using a machine-learning algorithm: a proof of concept with retrospective study.

BMC emergency medicine
INTRODUCTION: Overcrowding in emergency departments (ED) is a major public health issue, leading to increased workload and exhaustion for the teams, resulting poor outcomes. It seems interesting to be able to predict the admissions of patients in the...

Prediction of postoperative intensive care unit admission with artificial intelligence models in non-small cell lung carcinoma.

European journal of medical research
BACKGROUND: There is no standard practice for intensive care admission after non-small cell lung cancer surgery. In this study, we aimed to determine the need for intensive care admission after non-small cell lung cancer surgery with deep learning mo...