Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach.

Journal: BMC infectious diseases
PMID:

Abstract

BACKGROUND: Despite the greater sensitivity of the new dengue clinical classification proposed by the World Health Organization (WHO) in 2009, there is a need for a better definition of warning signs and clinical progression of dengue cases. Classic statistical methods have been used to evaluate risk criteria in dengue patients, however they usually cannot access the complexity of dengue clinical profiles. We propose the use of machine learning as an alternative tool to identify the possible characteristics that could be used to develop a risk criterion for severity in dengue patients.

Authors

  • Gleicy Macedo Hair
    Laboratório de Engenharia em Sistemas de Saúde, Programa de Engenharia Biomédica/COPPE/UFRJ, Centro de Tecnologia - Bloco H - Sala H327, Caixa Postal (P.O. Box): 68510, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-972, Brazil. ghairbioengineer@gmail.com.
  • Flávio Fonseca Nobre
    Laboratório de Engenharia em Sistemas de Saúde, Programa de Engenharia Biomédica/COPPE/UFRJ, Centro de Tecnologia - Bloco H - Sala H327, Caixa Postal (P.O. Box): 68510, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-972, Brazil.
  • Patrícia Brasil
    Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases; Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.