Realistic spiking neural network: Non-synaptic mechanisms improve convergence in cell assembly.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

Learning in neural networks inspired by brain tissue has been studied for machine learning applications. However, existing works primarily focused on the concept of synaptic weight modulation, and other aspects of neuronal interactions, such as non-synaptic mechanisms, have been neglected. Non-synaptic interaction mechanisms have been shown to play significant roles in the brain, and four classes of these mechanisms can be highlighted: (i) electrotonic coupling; (ii) ephaptic interactions; (iii) electric field effects; and iv) extracellular ionic fluctuations. In this work, we proposed simple rules for learning inspired by recent findings in machine learning adapted to a realistic spiking neural network. We show that the inclusion of non-synaptic interaction mechanisms improves cell assembly convergence. By including extracellular ionic fluctuation represented by the extracellular electrodiffusion in the network, we showed the importance of these mechanisms to improve cell assembly convergence. Additionally, we observed a variety of electrophysiological patterns of neuronal activity, particularly bursting and synchronism when the convergence is improved.

Authors

  • Damien Depannemaecker
    Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil; Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
  • Luiz Eduardo Canton Santos
    Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil; Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
  • Antônio Márcio Rodrigues
    Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil.
  • Carla Alessandra Scorza
    Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil.
  • Fulvio Alexandre Scorza
    Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
  • Antônio-Carlos Guimarães de Almeida
    Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil. Electronic address: acga@ufsj.edu.br.