Computer-Aided Diagnosis in Histopathological Images of the Endometrium Using a Convolutional Neural Network and Attention Mechanisms.

Journal: IEEE journal of biomedical and health informatics
PMID:

Abstract

Uterine cancer (also known as endometrial cancer) can seriously affect the female reproductive system, and histopathological image analysis is the gold standard for diagnosing endometrial cancer. Due to the limited ability to model the complicated relationships between histopathological images and their interpretations, existing computer-aided diagnosis (CAD) approaches using traditional machine learning algorithms often failed to achieve satisfying results. In this study, we develop a CAD approach based on a convolutional neural network (CNN) and attention mechanisms, called HIENet. In the ten-fold cross-validation on ∼3,300 hematoxylin and eosin (H&E) image patches from ∼500 endometrial specimens, HIENet achieved a 76.91 ± 1.17% (mean ± s. d.) accuracy for four classes of endometrial tissue, i.e., normal endometrium, endometrial polyp, endometrial hyperplasia, and endometrial adenocarcinoma. Also, HIENet obtained an area-under-the-curve (AUC) of 0.9579 ± 0.0103 with an 81.04 ± 3.87% sensitivity and 94.78 ± 0.87% specificity in a binary classification task that detected endometrioid adenocarcinoma. Besides, in the external validation on 200 H&E image patches from 50 randomly-selected female patients, HIENet achieved an 84.50% accuracy in the four-class classification task, as well as an AUC of 0.9829 with a 77.97% (95% confidence interval, CI, 65.27%∼87.71%) sensitivity and 100% (95% CI, 97.42%∼100.00%) specificity. The proposed CAD method outperformed three human experts and five CNN-based classifiers regarding overall classification performance. It was also able to provide pathologists better interpretability of diagnoses by highlighting the histopathological correlations of local pixel-level image features to morphological characteristics of endometrial tissue.

Authors

  • Hao Sun
    Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
  • Xianxu Zeng
  • Tao Xu
    Department of Urology, Peking University People's Hospital, Beijing, China.
  • Gang Peng
    Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
  • Yutao Ma
    State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China.