Prediction of the Health Effects of Food Peptides and Elucidation of the Mode-of-action Using Multi-task Graph Convolutional Neural Network.

Journal: Molecular informatics
Published Date:

Abstract

Food proteins work not only as nutrients but also modulators for the physiological functions of the human body. The physiological functions of food proteins are basically regulated by peptides encrypted in food protein sequences (food peptides). In this study, we propose a novel deep learning-based method to predict the health effects of food peptides and elucidate the mode-of-action. In the algorithm, we estimate potential target proteins of food peptides using a multi-task graph convolutional neural network, and predict its health effects using information about therapeutic targets for diseases. We constructed predictive models based on 21,103 peptide-protein interactions involving 10,950 peptides and 2,533 proteins, and applied the models to food peptides (e. g., lactotripeptide, isoleucyltyrosine and sardine peptide) defined in food for specified health use. The models suggested potential effects such as blood-pressure lowering effects, blood glucose level lowering effects, and anti-cancer effects for several food peptides. The interactions of food peptides with target proteins were confirmed by docking simulations.

Authors

  • Itsuki Fukunaga
    Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.
  • Ryusuke Sawada
    Division of System Cohort, Multi-Scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan. rsawada@bioreg.kyushu-u.ac.jp.
  • Tomokazu Shibata
    Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.
  • Kazuma Kaitoh
    Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.
  • Yukie Sakai
    Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan.
  • Yoshihiro Yamanishi
    Division of System Cohort, Multi-Scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan. yamanishi@bioreg.kyushu-u.ac.jp.