DeepCQ: Deep multi-task conditional quantification network for estimation of left ventricle parameters.

Journal: Computer methods and programs in biomedicine
Published Date:

Abstract

BACKGROUND AND OBJECTIVE: Automatic cardiac left ventricle (LV) quantification plays an important role in assessing cardiac function. Although many advanced methods have been put forward to quantify related LV parameters, automatic cardiac LV quantification is still a challenge task due to the anatomy construction complexity of heart.

Authors

  • Ruifeng Chen
    School of Computer Science and Technology, Anhui University, Anhui, China.
  • Chenchu Xu
    From the Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing, China (N.Z., L.X., Z.F.); Cardiovascular Research Centre, Royal Brompton Hospital, London, England (G.Y., R.S., J.K., D.F.); National Heart and Lung Institute, Imperial College London, London, England (G.Y., R.S., J.K., D.F.); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (Z.G., H.Z.); Anhui University, Hefei, China (C.X., Y.Z.); and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, China (H.Z.).
  • Zhangfu Dong
    School of Computer Science and Technology, Anhui University, Anhui, China.
  • Yueguo Liu
    School of Computer Science and Technology, Anhui University, Anhui, China.
  • Xiuquan Du
    Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, ‡School of Computer Science and Technology, and §Center of Information Support & Assurance Technology, Anhui University , Hefei, 230601 Anhui, China.