Machine Learning Methods for Computer-Aided Breast Cancer Diagnosis Using Histopathology: A Narrative Review.
Journal:
Journal of medical imaging and radiation sciences
Published Date:
Dec 26, 2019
Abstract
Histopathology is a method used for breast cancer diagnosis. Machine learning (ML) methods have achieved success for supervised learning tasks in the medical domain. In this article, we investigate the impact of ML for the diagnosis of breast cancer using histopathology images of conventional photomicroscopy. Cancer diagnosis is the identification of images as cancer or noncancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. In this article, different approaches to perform these necessary steps are reviewed. We find that most ML research for breast cancer diagnosis has been focused on deep learning. Based on inferences from the recent research activities, we discuss how ML methods can benefit conventional microscopy-based breast cancer diagnosis. Finally, we discuss the research gaps of ML approaches for the implementation in a real pathology environment and propose future research guidelines.